等差数列公式总结(一):
等差数列公式:等差数列前n项和公式为:Sn=n*a1+n(n-1)d2或Sn=n(a1+an)2。等差数列{an}的通项公式为:an=a1+(n-1)d。
等差数列公式总结(二):
等差数列前n项和公式为:Sn=n*a1+n(n-1)d2或Sn=n(a1+an)2。等差数列{an}的通项公式为:an=a1+(n-1)d。
等差数列是常见数列的一种,能够用AP表示,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。
等差数列求和公式有
①等差数列公式an=a1+(n-1)d、
②前n项和公式为:Sn=na1+n(n-1)d2、
③若公差d=1时:Sn=(a1+an)n2、
④若m+n=p+q则:存在am+an=ap+aq、
⑤若m+n=2p则:am+an=2ap,以上n均为正整数。
等差数列求和公式有几种写法
Sn=n(a1+an)2
Sn=na1+n(n-1)d2=dn^22+(a1-d2)n
通项公式为:an=a1+(n-1)*d。首项a1=1,公差d=2。前n项和公式为:Sn=a1*n+[n*(n-1)*d]2或Sn=[n*(a1+an)]2。注意:以上n均属于正整数。
等差数列的公式
公差d=(an-a1)÷(n-1)(其中n大于或等于2,n属于正整数);
项数=(末项-首项来)÷公差+1;
末项=首项+(项数-1)×公差;
前n项的和Sn=首项×n+项数(项数-1)公差/2;
第n项的值an=首项+(项数-1)×公差;
等差数源列中知项公式2an+1=an+an+2其中{an}是等差数列;
等差数列的和=(首项+末项)×项数÷2;
an=am+(n-m)d,若已知某一项am,可列出与d有关的式子求解an。[本内容由 首页 / 整理]
等差数列公式总结(三):
1、等差数列求和公式:Sn=na1+n(n-1)d2;等比数列求和公式:Sn=a1(1-q^n)(1-q)(q≠1)。
2、等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。
3、等比数列公式就是在数学上求必须数量的等比数列的和的公式。另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。
等差数列公式总结(四):
等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。
等差数列基本公式:
末项=首项+(项数-1)×公差
项数=(末项-首项)÷公差+1
首项=末项-(项数-1)×公差
和=(首项+末项)×项数÷2
通项公式
等差数列的通项公式为:an=a1+(n-1)d (1)
前n项和公式
前n项和公式为:Sn=na1+n(n-1)d2或Sn=n(a1+an)2 (2)
以上n均属于正整数.
推论
1.从(1)式能够看出,an是n的一次函数(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0.
2.从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}
3.若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aq,Sm-1=(2n-1)an,S2n+1=(2n+1)an+1,Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等.
若m+n=2p,则am+an=2ap
4.其他推论
和=(首项+末项)×项数÷2
项数=(末项-首项)÷公差+1
首项=2和÷项数-末项
末项=2和÷项数-首项
末项=首项+(项数-1)×公差
推论3证明
若m,n,p,q∈N*,且m+n=p+q,则有若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aq
如am+an=a1+(m-1)d+a1+(n-1)d
=2a1+(m+n-2)d
同理得,
ap+aq=2a1+(p+q-2)d
又因为
m+n=p+q ;
a1,d均为常数
所以
若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aq
注:1.常数列不必须成立
2.m,p,q,n大于等于天然数
等差中项
在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项,且为数列的平均数.
且任意两项am,an的关系为:an=am+(n-m)d
它能够看作等差数列广义的通项公式.
等差数列公式总结(五):
Sn=n*a1+n(n-1)d2
等差数列公式
等差数列前n项和公式为:Sn=n*a1+n(n-1)d2或Sn=n(a1+an)2。等差数列{an}的通项公式为:an=a1+(n-1)d。
等差数列是常见数列的一种,能够用AP表示,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。
等差数列求和公式有
①等差数列公式an=a1+(n-1)d、
②前n项和公式为:Sn=na1+n(n-1)d2、
③若公差d=1时:Sn=(a1+an)n2、
④若m+n=p+q则:存在am+an=ap+aq、
⑤若m+n=2p则:am+an=2ap,以上n均为正整数。
等差数列求和公式有几种写法
Sn=n(a1+an)2
Sn=na1+n(n-1)d2=dn^22+(a1-d2)n
通项公式为:an=a1+(n-1)*d。首项a1=1,公差d=2。前n项和公式为:Sn=a1*n+[n*(n-1)*d]2或Sn=[n*(a1+an)]2。注意:以上n均属于正整数。
等差数列的公式
公差d=(an-a1)÷(n-1)(其中n大于或等于2,n属于正整数);
项数=(末项-首项来)÷公差+1;
末项=首项+(项数-1)×公差;
前n项的和Sn=首项×n+项数(项数-1)公差/2;
第n项的值an=首项+(项数-1)×公差;
等差数源列中知项公式2an+1=an+an+2其中{an}是等差数列;
等差数列的和=(首项+末项)×项数÷2;
an=am+(n-m)d,若已知某一项am,可列出与d有关的式子求解an。